
NASA-CR-198000
j • z'

FTAPE: A FAULT INJECTION TOOL TO MEASURE FAULT TOLERANCE

Timothy K. Tsai and Ravishankar K. Iyer*

University of Illinois

Center for Reliable and High Performance Computing

Coordinated Science Laboratory

Urbana, Illinois

2

Abstract

The paper introduces FTAPE (Fault Tolerance

And Performance Evaiuator), a tool that can be

used to compare fault-tolerant computers. The tool

combines system-wide fault injection with a control-

lable workload. A workload generator is used to cre-

ate high stress conditions for the machine. Faults

are injected based on this workload activity in or-

der to ensure a high level of fault propagation. The

errors/fault ratio and performance degradation are

presented as measures of fault tolerance.

1 Introduction

A method with which the fault tolerance of any com-

puter can be measured is desirable. Such a fault
tolerance measure can be used to compare fault-

tolerant computers. For purchasers of a new fault-

tolerant system, a measure that summarizes the ef-

fectiveness and efficiency of the fault tolerance would

be a helpful aid. A fault tolerance measure can also

be used as feedback to engineers in the evaluation of

different fault-tolerant designs.

This paper introduces FTAPE (Fault Tolerance

and Performance Evaluator), a tool that character-

izes the fault tolerance of a computer with a single

measure. The tool combines a fault injector with a

workload generator to encourage a high level of fault

propagation, which is needed to thoroughly test the
fault tolerance mechanism of the system. The fault

injector measures the instantaneous workload activ-

ity to automatically determine the injection time
and location that will maximize fault propagation.

Since the fault detection and recovery mechanisms

that comprise the fault tolerance of a computer can

only be activated by faults and their correspond-

ing manifestations, fault injection is the most prac-
tical means to measure their effectiveness. FTAPE

*Professor, Electrical and Computer Engineering, Asso-
ciate Fellow AIAA

has the ability to inject faults into CPU registers,

memory, and disk systems. Because fault tolerance

mechanisms are present in many different parts of

a fault-tolerant system, faults must be injected into

those different parts in order to measure how well

the entire system responds to faults.

A synthetic workload generator is used to provide
an easily controllable workload that will aid fault

propagation. Since fault propagation and the even-
tual effect of faults are dependent upon the accompa-

nying workload, the ability to control the workload

is essential to influencing fault propagation. With

the synthetic workload generator, the workload can

be specified to exercise the CPU, memory, or disk.

The amount of stress that the workload places on

each system component (i.e., CPU, memory, or disk)

can be given as a distribution over time. Multiple

workload processes can be executed.

Stress-based injection is the process of injecting

faults based upon a measurement of the current

workload activity. Stress in this sense refers to the

amount of activity caused by the workload which

could encourage fault propagation. The workload
is measured and characterized in terms of the level

of stress for each system component and the over-

all system at a particular time. The rate of fault

injection is increased during times of greater overall

system stress, and faults are injected into the system

components with the highest stress level.

Since the main goal of the tool is to characterize

the fault tolerance of the system using a single quan-

tity, a metric for that characterization is needed.

Several-metrics are proposed and measured. The

ratio of detected errors to injected faults represents

the effectiveness of error recovery, while performance

degradation represents the efficiency of error recov-

ery.

In addition to obtaining a measure of the system

fault tolerance, FTAPE is also useful for providing

more detailed feedback to system designers. When

system failures occur, the propagation of the guilty

fault can be traced, and that information can be

Copyright ©1994 by the American Institute of Aeronautics
and Astronautics, Inc. All rights reserved. 1

American Institute of Aeronautics and Astronautics

usedto improvethedesignofthefaultcontainment
mechanisms.

FTAPEis designedto beusedona functioning
hardwareimplementationof a fault-tolerantcom-
puter.ThetoolhasbeenimplementedonaTandem
Integrity$2 fault-tolerantcomputer.Experiments
usingthetoolshowtheeffectof differentworkloads
in influencingfaultpropagation.A measureof the
overallsystemfault toleranceis alsoobtained.The
implementationof FTAPEhasbeendesignedto be
portable,althoughthe fault injectoris dependent
to a degreeuponthearchitectureof themeasured
machine.Plansexisttoport thetoolto otherfault-
tolerantmachinesandcomparethefault tolerance
ofthosemachines.

2 Related Work

There are several different approaches to fault injec-

tion. Presently, FTAPE uses software-implemented

fault injection (SWIFI) 1 , which uses software to em-

ulate the effects of underlying physical faults. Sev-

eral fault injection tools use SWIFI, such as FIAT 5,

FERRARI 3, and FINE 4. FTAPE differs from these

tools by adding a synthetic workload generator and

the ability of the fault injector to inject faults based

upon dynamic workload measurements.

Part of the dynamic workload measurement is per-

formed using a hybrid monitor-based environment

similar to that described by Young 7.

3 Description of Tool

FTAPE is a tool that integrates the injection of

faults and the workload necessary to propagate those

faults. The tool is composed of three main parts: FI

(the fault injector), MEASURE, and WG (the work-

load generator). Figure 1 shows how these three

parts interact. The FI is responsible for performing

the fault injection. MEASURE provides a measure-

ment of the current workload activity that is used by
the FI to determine the time and location for fault

injection. The WG is a synthetic workload generator
which creates workloads that are designed to propa-

gate the injected faults. A more detailed description
of each part of the tool follows.

3.1 Fault Injector

The main task of the FI is to inject faults into the

target system. The method of injection used by the
current version of FTAPE is software-implemented

fault injection, which uses software to emulate the

Workload

c pu; ' :"":'mem'.... io

Workload•[©©01
MEASURE

Figure 1: General Block Diagram of FTAPE

effects of underlying physical faults. For instance,
a bit in a memory location can be flipped to em-

ulate the effect of an alpha particle on a memory
bit. This method of fault injection is more control-

lable than hardware-based injection (e.g., it would

be difficult to inject faults into memory using hard-

ware), but software-based injection incurs a higher
time overhead. See Section 4.5 for measurements of

this overhead.

The main goal of fault injection is to exercise the

error detection and recovery mechanisms in the tar-

get system: The best way to do this is to inject faults

throughout the entire system. FTAPE partitions the

system into three main areas: cpu, mere, and io.

For each area a different method of fault injection is

required. These areas are also the same areas that

are targeted by the WG. Because the same areas

are targeted by both the FI and the WG, there is a

good chance for the injected faults to be propagated

by the workload.

3.1.1 Fault Injection Method

The fault injection methods used by the FI are de-
scribed below. Note that fault-tolerant systems have

widely varying architectures and therefore require

different fault injection techniques. The following
are for the implementation of FTAPE on the Tan-

dem Integrity $2:

2

American Institute of Aeronautics and Astronautics

inject_cpu Faults are injected into CPU registers,

specifically, saved t general purpose and floating

point registers, the program counter, the global

pointer, and stack pointer. These registers were
chosen because faults in these register have a

higher chance of propagation compared to faults

in other registers (e.g., temporary registers).

The method of injection involves the following

steps:

1. Obtain a copy of the registers.

2. Corrupt the register to be injected.

3. Place the corrupted register value back

into the CPU register. The transfer of the

CPU values in and out is only performed

when the targeted workload process is con-

text switched out of the CPU.

The fault model is a single bit-flip.

inject_mem Faults are injected into local memory.
Since only portions of the memory are heav-

ily used by the workload, faults are targeted at

those portions. Faults are injected by directly

modifying the contents of selected memory lo-
cations. The fault model is a single bit-flip.

inject_io Faults are injected into a mirrored disk
system. The method of injection involves using

a test portion of the disk driver code that sets

error flags for the next driver request. Thus,

the next request will be detected by the error
handler in the driver code, and one half of the

disk mirror may be disabled. The fault model
includes valid disk error codes.

3.1.2 Fault Selection Method

The time and location for each fault injection is de-

termined using one of the following methods. Some
of the methods involve the measurement of workload

stress, which is described in the next section:

location-based stress-based injection (LSBI)

Faults are injected into the area (CPU, memory,

or IO) with the greatest normalized stress.

time-based stress-based injection (TSBI)

Faults are injected during the time the compos-

ite stress is greater than a specific threshold.

randomly The fault time is selected randomly

based on a specified distribution (e.g., an expo-
nential interarrival distribution with a specified

tSaved registers are those registers who values must be
preservedacrossprocedurecalls.

mean of 20 seconds), and the fault location is

randomly chosen based on a uniform distribu-
tion.

If an error is detected, then all injections are sus-

pended until the error is corrected, because an error

detection on the Tandem $2 disables the component

in which the error was detected (e.g., a detected er-

ror in the CPU forces the entire CPU off-line).

The fault, models used for cpu and mem are sin-

gle bit-flips. For io, valid error codes are randomly
chosen.

3.2 Workload Generator

The main purpose of the workload generator is to

provide an easily controllable workload that can

propagate the faults injected by the FI. The work-

load is synthetic to allow easy specification of the

workload, based on a few parameters. The same ar-

eas that are used used the FI (cpu, mem, and io)

are targeted for workload activity. Each workload is

comprised of one or more processes. Each process is

composed of a sequence of the following three func-

tions, each of which exercises one of the three main

system areas intensively:

use_cpu This function is CPU-intensive. It con-

sists of repeated additions, subtractions, multi-

plications, and divisions for integer and float-

ing point variables. These operations are

performed in a loop containing conditional

branches. Memory accesses are limited by using

CPU registers as much as possible.

use_mere This function is memory-intensive. A

large memory array is created, and locations in

this array are repeatedly read from and writ-

ten to in a sequential manner. The array is

larger than the size of the data cache in order

to ensure that accesses are being made to the

physical memory.

use_io This function is I/O-intensive. A dummy

file system is created on a mirrored disk system.

Opens, reads, writes, and closes are repeatedly

performed.

The parameters for each function are specified in

a parameter file. In practice, each function is usu-

ally specified to last the same amount of time (e.g.,

one second). Then the composition of each work-

load process can be specified to contain a specific

proportion of each function. For instance, a work-
load that is CPU-intensive with a small amount of

memory and I/O activity can be specified to contain

3

American Institute of Aeronautics and Astronautics

90%ofthecpu functionand5%ofthemereandio
functions.Suchaworkloadwouldbesaidto havea
composition of 90/5/5. When the workload process
is executed, each function will be randomly chosen

according to corresponding probabilities.
Each function also reads and writes data from

a special global interdependence array which forces

data flow among functions. This is necessary to en-

courage fault propagation among functions. Other-

wise, a data fault in one function is usually overwrit-

ten if the fault influences only variables local to that

function and the system doesn't detect the error be-
fore the end of the function.

The intensity is the amount of activity in each

function relative to the maximum possible activity.

The intensity of each function can be controlled.

This is useful for studying the impact of the work-

load activity level on fault propagation. For most of
the workloads used in the experiments in Section 4,

the intensity is varied from 100% to 20% over a pe-
riod of about nine minutes $. Varying the intensity

emphasizes the effect of high and low workload ac-

tivity on the amount of fault propagation.

Finally, the workload sends to the FI information

needed to determine the location of certain faults,

such which processes are currently executing and

what portions of memory are being used.

3.3 MEASURE

MEASURE is a tool that monitors the actual work-

load activity. Each workload is specified by its as-
sociated parameter files to contain a certain relative

amount of cpu, mere, and io activity. Although

each workload function is designed to be very inten-

sive for one system area, each function must nee-

essarily cause activity in other system areas. For

instance, the io function must also use the CPU and

perform memory reads and writes as well as access-

ing the disk. Thus, the MEASURE tool is necessary
to measure the actual activity caused by the work-

load.

MEASURE returns the level of workload stress

for each system area as well as for the system as a

whole. The stress is the amount of workload activity

-- especially that which can aid fault propagation.

As with the FI, the methods needed to obtain the

stress measures for each system area are system de-

pendent to a large extent. For each system area, the

following methods are used to obtain the workload

stress:

SThis time period needs to be long enough for the MEA-
SURE tool and FI to react to the corresponding workload
activity.

measure_cpu The stress measure is based upon the

CPU utilization. On the $2, the sat utility re-
turns the CPU utilization.

measure_mere The stress measure is based upon

the number of reads and writes per second to

the memory space used by the workload. Since

any software method of obtaining this informa-
tion would incur an unacceptable amount of

overhead, a hardware method is used. A Tek-

tronix DAS 9200 logic analyzer is used to count

the number of memory accesses. This count is

automatically sent to the MEASURE program

every 10 seconds.

measure_.io The stress measure is based on the

number of disk blocks accessed per second. On

the $2, the sat utility returns the number of

disk blocks accessed per second.

A detailed description of the setup needed to mea-

sure mere stress can be found in Young 6.

Each stress measure is normalized in order to

compare the different measures. The normaliza-

tion is performed by running a set of various

workloads § and obtaining a distribution of the raw

stress measures (i.e., CPU utilization, memory ac-

cesses/second, and disk blocks/second). Each raw
stress measure was normalized to a value between 0

and 1, inclusively, based on the following formula,

where Xmi, is the 5th percentile value and)(max is

the 95th percentile value in the raw stress distribu-
tion:

One disadvantiage of the current methods is the

relatively long amount of time between measure-

ments (about 10 seconds). This is mainly due to
the amount of time required by the logic analyzer to

count memory accesses. However, most of this time

is used to set up the logic analyzer; the actual count

only takes about one second. A newer logic analyzer

will be used in the future to significantly decrease

this setup time.

4 Experiments

The main goals of the following experiments are

• to see how FTAPE can be used to investigate

how a specific machine (the Tandem Integrity

$2) performs under faults and
1

§These workloads had compositions of 33/33/33,
20/20/60, 20/60/20, and 60/20/20.

American Institute of Aeronautics and Astronautics

• to illustratetheeffectivenessofstress-basedin-
jection.

ThetargetmachinefortheseexperimentsistheTan-
demIntegrity$2 fault-tolerantcomputer.A brief
descriptionof the $2 is givenin Section4.1. The
generalexperimentalprocedureisdescribedin Sec-
tion 4.2. The first setof experiments,described
in Section4.3,involvesinjectingcoordinatedfaults
(i.e.,faults that areinjectedinto areasof great-
estworkloadstress)anduncoordinatedfaults(i.e.,
faultsthat areinjectedintoareasofleastworkload
stress).Theseexperimentsexposethesensitivityof
certainworkloadsto specificfaults. Thenextset
of experiments,presentedin Section4.4,illustrates
theeffectivenessofstress-basedinjectionsinincreas-
ing faultpropagation.Finally,theoverheadof the
FI andMEASUREtoolsis measuredandgivenin
Section4.5.

4.1 Description of $2

The Integrity $2 2 is a fault-tolerant computer de-

signed by Tandem Computers, Inc. The core of the

$2 is its triple-modular-redundant processors. Each

processor includes a CPU, a cache, and an 8MB local

memory. Although these three processors perform

the same work, they operate independently of each

other until they need to access the doubly-replicated

global memory. At this point, the duplexed Triple

Modular Redundant Controllers (TMRCs) vote on
the address and data. If an error is found, the faulty

processor is shut down. After that processor passes

a power-on self-test (POST), it is reintegrated into

the system by copying the states of the two good

processors. Voting also occurs on all I/O and in-

terrupts. In addition, the local memory is scrubbed

periodically. This architecture ensures that a fault
that occurs on one processor will not propagate to

other system components without being caught by

the TMRC voting process.

CPU

Local

Memory

CPU

Local

Memory

Voter

TMRC

Global

Memory

l

Voter

TMRC

Global

Memory

[
I

I Controller II
I"

I/O Devices I

I

[Controller]

CPU

Local

Memory

I

h
IOP I

I

1
Figure 2: Overview of Tandem Integrity $2 Archi-
tecture

4.2 General Experimental Procedure

Each experiment thus is composed of two runs, one
with faults and one without. The reason for this du-

plication is that is allows the calculation of the per-

formance degradation, which is the amount of extra

time required by the workload due to the detection

and correction of faults by the system. If T! is the
workload execution time under fault injection and

Tn! is the time with no faults, then the performance

5

American Institute of Aeronautics and Astronautics

degradation is

Performance_ TI,
Degradation Tnl - 1.

Performance degradation can be used as a measure

of system fault tolerance because it is related to de-

pendability degradation. When a system is in an

error state, it is vulnerable to system failure if an-

other fault is activated (assuming single fault toler-

ance), and thus the dependability of the system is

degraded. Dependability degradation is difficult to

measure directly. The performance degradation due

to faults is easily measured.

Each experiment consists of the following steps:

1. Start the MEASURE tool.

2. Run the workload while injecting faults. Mea-

sure the total workload time required.

3. Run the workload a second time, this time with-

out injecting any faults. Again measure the to-

tal workload time required.

For the second non-injection run, the FI is still exe-

cuted, but with null injection masks. In other words,

the FI goes through the motions of injecting faults,

but instead of flipping a bit (XORing with a 1) and

setting a disk error (setting error to nonzero value),

the FI doesn't flip a bit (XORs with a 0) and sets

a null disk error (sets error to zero value). By so

doing, the second run will also invoke the same FI
overhead as the first run. This is important when

comparing workload execution times.

To illustrate the relationship between dependabil_

ity degradation and performance degradation, con-

sider, for example, the mirrored disk system. When
an error is detected on one of the mirrored disks, the

mirror half is taken off-line. This results in lower de-

pendability because an' error in the remaining mir-

ror half will take down the entire disk system (which

would result in a total system failure if it contains

vital files). When the bad mirror half is off-line, all

disk reads must be serviced by the single on-line mir-

ror half. This results in lower degraded performance

compared to a disk mirror with two on-line halves,
which can send half of the disk reads to each mirror

half.

Another result that is interesting is the ratio of

error detections to fault inj.ections. Along with the

performance degradation the errors/fault ratio show

the amount of fault propagation for each experiment.

4.3 Sensitivity of Workloads to Faults

The experiments in this section show that faults

which are injected into the areas of greatest work-

load stress produce the most fault propagation. The

experiments are grouped into two categories: (1) in-

ject faults into areas with little workload stress and

(2) inject faults into areas with the greatest work-

load stress. For example, the experiments in the first

two rows of Table 1 involve cpu injections. The first

experiment uses a cpu-intensive workload, while the

second other uses a mostly mere and io workload.

The injection time is chosen randomly based on an

exponential rate with a specified mean of 20 seconds.

The results of the experiments are given in Ta-

ble 1. Each row represents the average of multiple

runs. From Table 1, a few observations can be made.

First, the amount of fault propagation (as seen in the

errors/fault and performance degradation colunms)

is higher if faults are exercised by heavy workload

activity in that area (as shown in the composition

column). This is especially evident for io, where
the rate of error detection doubles from 0.295 to

0.650, and the performance degradation increases

from 0.0703 to 1.1296, when an io-intensive work-

load is used. This effect occurs because the injected

io faults are being activated more by the increased

io workload activity. The reason the io fault propa-

gation increase is more pronounced than for cpu or

mere is the different type of effect a downed mir-

ror half has compared to a downed CPU or memory.

The downed mirror half causes all disk reads to go

to the single mirror half, thus almost halving the

disk access rate (if disk writes are ignored) until the

mirror half is repaired and brought on-line (which

takes about 100 seconds). The down CPU or mem-

ory only impacts the performance when the CPU or

memory must be halted for repair (i.e., copying the

data from the good CPU or memory), which requires

only one or two seconds. These results verify that

fault propagation is affected by the workload.

4.4 Stress-based Injection Results

The experiments in this section use time-based

(TSBI) and location-based (LSBI) stress-based in-

jection to determine the time and location for fault

injection. The results of these experiments are given

in Table 2. Each line in the table represents the av-

erage of multiple runs. Four different workloads are

injected with faults in the following manner:

1. Faults are injected only if the composite work-

load stress is higher then the high stress thresh-

old. (Noted as "High" TSBI in the table.)

2. Faults are injected only if the composite work-
load stress is lower than the low stress threshold.

(Noted as "Low" TSBI in the table.)

6

American Institute of Aeronautics and Astronautics

Injection

Run Location

a cpu

b cpu

c mern

d mere

e |o

f io

Table 1: Sensitivity of Workloads to Faults

Errors
Composition Faults Errors

cpu mem io Injected Detected

4 48 48 61 9 0.148

90 5 5 101 26 0.257

48 4 48 87.3 2.3 0.027

5 90 5 70.7 2.7 0.038

48 48 4 48.3 12 0.248

5 5 90 36.7 25.7 0.700

Time with Time without Performance

Faults (sec) Faults (sec) Degradation

1588 1544 0.0285

2334 2236 0.0438

1948 1928 0.0104

1558 1537 0.0137

2026 1910 0.0607

3347 1583 1.1143

Table 2: Stress-based Injection Results

Errors
Composition Faults Errors

Run TSBI cpu mem io Injected Detected

g High 90 5 5 24 4 0.177
Low 90 5 5 170 12 0.073

h High 20 20 60 73 14 0.197
Low 20 20 60 75 2 0.027

i High 5 5 90 38 30 0.788
Low 5 5 90 55 2 0.032

j High 33 33 33 68 8 0.118
Low 33 33 33 96 4 0.045

Time with Time without Performance

Faults (sec) Faults (sec) Degradation

2362 2299 0.0273

2375 2301 0.0322

2335 1713 0.3632

1755 1712 0.0251

3573 1589 1.248

1593 1586 0.0046

1959 1861 0.0524

1875 1856 0.0102

It can be seen that the fault propagation (as seen

in the errors/fault and performance degradation

columns) is lower in all cases when faults are injected

during times of low workload activity. As was the

case with the experiments in the previous section,

the io-intensive workload (with 5/5/90 composition)

has the most significant difference in fault propaga-

tion.

4.5 Overhead

There is an overhead associated with the FI and

MEASURE tools. Each requires CPU time, which
increases the workload execution time. Also, addi-

tional effects such as cache flushing, paging, and I/O

activity can further increase the workload execution
time. The impact of this overhead on the workload

execution time can be measured by comparing the

time the workload requires with and without the FI

and MEASURE tools executing simultaneously. The

results are given in Table 3. Although the overhead

caused by the FI and MEASURE programs is sig-

nificant (5.4-16.8%), this overhead is incurred for all
experiments. For the two runs in each type of exper-

iment, the run with faults and the run without faults

requires the FI and MEASURE programs to perform

the same operations. Thus, although the overhead

affects the absolute results, the relative results are

much less affected by the overhead. Further study is

needed to determine if the impact can be completely

ignored.
The overhead also seems to increase with more

CPU activity and less I/O activity. This might occur
because less idle CPU cycles are available for the FI

and Measure programs as the workload blocks less

for I/O and uses the CPU more.

5 Conclusions

FTAPE is a tool that can compare the fault toler-
ance of fault-tolerant computers. Faults are injected

injected at times and locations of greatest workload

activity in order to encourage fault propagation. Ex-

periments with FTAPE show an increase in fault

propagation (as measured by errors/fault and per-

formance degradation) when faults are injected (1)

into components (e.g., CPU) that are exercised heav-

ily by the workload and (2) at times of greatest over-
all workload stress.

In the future, the tool will be ported to other

fault-tolerant platforms and used to compare these

machines. More representative workloads and fault

models will be incorporated into the tool.

6 Acknowledgements

Thanks are due Tandem Computer, Inc. for their

help in this work. This research was supported in

7

American Institute of Aeronautics and Astronautics

Run

g
h

i

J

Table 3: Overhead Measurements

Composition

cpu mem io

90 5 5

20 20 60

5 5 90

33 33 33

Time with Time without. %

FI/MEASURE (sec) FI/MEASURE (sec) Overhead
2289 1959 16.8%

1709 1564 9.3%

1594 1512 5.4%

1847 1591 16.1%

part by the _dvanced Research Projects Agency

(ARPA) under contract DABT63-94-C-0045 and by

NASA grant NAG 1-613, in cooperation with the

Illinois Computer Laboratory for Aerospace Systems

and Software (ICLASS). The content of this paper

does not necessarily reflect the position or policy of

the government and no endoresement should be in-
ferred.

the Third IFIP Working Conference on De-

pendable Computing for Critical Applications,

(Mondello, Sicily, Italy), pp. 163-174, Septem-
ber 1992.

References

[1] J. H. Barton et al., "Fault injection experiments
using fiat," IEEE Transactions on Computers,

vol. 39, pp. 575-582, April 1990.

[2] D. Jewett, "Integrity s2: A fault-tolerant
UNIX platform," in 21st International Sympo-

sium on Fault-Tolerant Computing, (Montreal,

Canada), pp. 512-519, June 1991.

[3] G. Kanawati, N. Kanawati, and J. Abraham,
"Ferrari: A fault and error automatic real-time

injector," in Proceedings of the 2end Interna-

tional Symposium on Fault-Tolerant Comput-

ing, (Boston, Massachusetts), 1992.

[4] W.-L. Kao, R. Iyer, and D. Tang, "FINE: A

Fault Injection and Monitoring Environment

for Tracing the UNIX System Behavior under

Faults," in IEEE Transactions on Software En-

gineering, vol. 19, pp. 1105-1118, November
1993.

[5] Z. Segall et al., "Fiat-fault injection-based au-
tomated testing environment," in 18th Interna-

tional Symposium on Fault-Tolerant Comput-

ing, pp. 102-107, 1988.

[6] L. Young and R. Iyer, "Error latency mea-
surements in symbolic architectures," in AIAA

Computing in Aerospace 8, (Baltimore, Mary-

land), pp. 786-794, October 1992.

[7] L. Young et al., "Hybrid monitor assisted
fault injection environment," in Proceedings of

8

American Institute of Aeronautics and Astronautics

